Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer's disease.
نویسندگان
چکیده
The development of novel therapeutic strategies for Alzheimer's disease (AD) represents one of the biggest unmet medical needs today. Application of neurotrophic factors able to modulate neuronal survival and synaptic connectivity is a promising therapeutic approach for AD. We aimed to determine whether the loco-regional delivery of ciliary neurotrophic factor (CNTF) could prevent amyloid-beta (Abeta) oligomer-induced synaptic damages and associated cognitive impairments that typify AD. To ensure long-term administration of CNTF in the brain, we used recombinant cells secreting CNTF encapsulated in alginate polymers. The implantation of these bioreactors in the brain of Abeta oligomer-infused mice led to a continuous secretion of recombinant CNTF and was associated with the robust improvement of cognitive performances. Most importantly, CNTF led to full recovery of cognitive functions associated with the stabilization of synaptic protein levels in the Tg2576 AD mouse model. In vitro as well as in vivo, CNTF activated a Janus kinase/signal transducer and activator of transcription-mediated survival pathway that prevented synaptic and neuronal degeneration. These preclinical studies suggest that CNTF and/or CNTF receptor-associated pathways may have AD-modifying activity through protection against progressive Abeta-related memory deficits. Our data also encourage additional exploration of ex vivo gene transfer for the prevention and/or treatment of AD.
منابع مشابه
Early neurotrophic pharmacotherapy rescues developmental delay and Alzheimer’s-like memory deficits in the Ts65Dn mouse model of Down syndrome
Down syndrome (DS), caused by trisomy 21, is the most common genetic cause of intellectual disability and is associated with a greatly increased risk of early-onset Alzheimer's disease (AD). The Ts65Dn mouse model of DS exhibits several key features of the disease including developmental delay and AD-like cognitive impairment. Accumulating evidence suggests that impairments in early brain devel...
متن کاملDendrobium alkaloids prevent Aβ25–35-induced neuronal and synaptic loss via promoting neurotrophic factors expression in mice
BACKGROUND Neuronal and synaptic loss is the most important risk factor for cognitive impairment. Inhibiting neuronal apoptosis and preventing synaptic loss are promising therapeutic approaches for Alzheimer's disease (AD). In this study, we investigate the protective effects of Dendrobium alkaloids (DNLA), a Chinese medicinal herb extract, on β-amyloid peptide segment 25-35 (Aβ25-35)-induced n...
متن کاملNpgrj_NM_1912 1..7
Profound neuronal dysfunction in the entorhinal cortex contributes to early loss of short-term memory in Alzheimer’s disease1–3. Here we show broad neuroprotective effects of entorhinal brain-derived neurotrophic factor (BDNF) administration in several animal models of Alzheimer’s disease, with extension of therapeutic benefits into the degenerating hippocampus. In amyloid-transgenic mice, BDNF...
متن کاملPKC ε activation prevents synaptic loss, Aβ elevation, and cognitive deficits in Alzheimer's disease transgenic mice.
Among the pathologic hallmarks of Alzheimer's disease (AD) neurodegeneration, only synaptic loss in the brains of AD patients closely correlates with the degree of dementia in vivo. Here, we describe a molecular basis for this AD loss of synapses: pathological reduction of synaptogenic PKC isozymes and their downstream synaptogenic substrates, such as brain-derived neurotrophic factor. This red...
متن کاملA Novel Neurotrophic Drug for Cognitive Enhancement and Alzheimer's Disease
Currently, the major drug discovery paradigm for neurodegenerative diseases is based upon high affinity ligands for single disease-specific targets. For Alzheimer's disease (AD), the focus is the amyloid beta peptide (Aß) that mediates familial Alzheimer's disease pathology. However, given that age is the greatest risk factor for AD, we explored an alternative drug discovery scheme that is base...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 22 شماره
صفحات -
تاریخ انتشار 2010